Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338704

RESUMO

In recent years, research has shown that oxidative stress plays a significant role in chronic inflammatory conditions. The alteration of the oxidant/antioxidant balance leads to the appearance of free radicals, important molecules involved in both diabetes mellitus and periodontal disease. Diabetes is considered to be one of the major risk factors of periodontal disease and the inflammation characterizing this condition is associated with oxidative stress, implicitly resulting in oxidative damage to DNA. 8-Hydroxydeoxyguanosine (8-OHdG) is the most common stable product of oxidative DNA damage caused by reactive oxygen species, and its levels have been reported to increase in body fluids and tissues during inflammatory conditions. 8-OHdG emerges as a pivotal biomarker for assessing oxidative DNA damage, demonstrating its relevance across diverse health conditions, including neurodegenerative disorders, cancers, inflammatory conditions, and periodontal disease. Continued research in this field is crucial for developing more precise treatments and understanding the detailed link between oxidative stress and the progression of periodontitis. The use of the 8-OHdG biomarker in assessing and managing chronic periodontitis is an area of increased interest in dental research, with the potential to provide crucial information for diagnosis and treatment.


Assuntos
Periodontite Crônica , Diabetes Mellitus , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Desoxiguanosina , Saliva/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo , Diabetes Mellitus/diagnóstico , Dano ao DNA
2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298158

RESUMO

The diagnosis and management of fragile X syndrome (FXS) have significantly improved in the last three decades, although the current diagnostic techniques are not yet able to precisely identify the number of repeats, methylation status, level of mosaicism, and/or the presence of AGG interruptions. A high number of repeats (>200) in the fragile X messenger ribonucleoprotein 1 gene (FMR1) results in hypermethylation of promoter and gene silencing. The actual molecular diagnosis is performed using a Southern blot, TP-PCR (Triplet-Repeat PCR), MS-PCR (Methylation-Specific PCR), and MS-MLPA (Methylation-Specific MLPA) with some limitations, with multiple assays being necessary to completely characterise a patient with FXS. The actual gold standard diagnosis uses Southern blot; however, it cannot accurately characterise all cases. Optical genome mapping is a new technology that has also been developed to approach the diagnosis of fragile X syndrome. Long-range sequencing represented by PacBio and Oxford Nanopore has the potential to replace the actual diagnosis and offers a complete characterization of molecular profiles in a single test. The new technologies have improved the diagnosis of fragile X syndrome and revealed unknown aberrations, but they are a long way from being used routinely in clinical practice.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Metilação de DNA , Inativação Gênica , Repetições de Trinucleotídeos , Alelos , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Mutação
3.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978905

RESUMO

Mitochondria are subcellular organelles involved in essential cellular functions, including cytosolic calcium regulation, cell apoptosis, and reactive oxygen species production. They are the site of important biochemical pathways, including the tricarboxylic acid cycle, parts of the ureagenesis cycle, or haem synthesis. Mitochondria are responsible for the majority of cellular ATP production through OXPHOS. Mitochondrial dysfunction has been associated with metabolic pathologies such as diabetes, obesity, hypertension, neurodegenerative diseases, cellular aging, and cancer. In this article, we describe the pathophysiological changes in, and mitochondrial role of, metabolic disorders (diabetes, obesity, and cardiovascular disease) and their correlation with oxidative stress. We highlight the genetic changes identified at the mtDNA level. Additionally, we selected several representative biomarkers involved in oxidative stress and summarize the progress of therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...